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Abstract

The four thermodynamic potentials, the internal energy u = u(e;;,s), the Helmholtz free energy f = f(e;, T), the
Gibbs energy g = g(gy;, T) and the enthalpy & = h(g;;,s) are derived, independently of each other, by using the Duh-
amel-Neumann extension of Hooke’s law and an assumed linear dependence of the specific heat on temperature. A
systematic procedure is then presented to express all thermodynamic potentials in terms of four possible pairs of
independent state variables. This procedure circumvents a tedious transition from one potential to another, based on
the formal change of variables, and inversions of the stress—strain and entropy—temperature relations. The general
results are applied to uniaxial loading paths under isothermal, adiabatic, constant stress, and constant strain conditions.
An interplay of adiabatic and isothermal elastic constants in the expressions for exchanged heat along certain ther-
modynamic paths is indicated.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The structure of the constitutive equations relating the stress, strain, entropy, and temperature in linear
thermoelasticity is well-known (e.g., Boley and Weiner, 1960; Sneddon, 1974). Most commonly, the deri-
vation of these equations proceeds by assuming a quadratic representation of the Helmholtz free energy in
terms of strain and temperature, with the coefficients specified in accord with the observed isothermal
elastic behavior, the coefficient of thermal expansion, and the specific heat. This yields (e.g., Kovalenko,
1969)

1 e
f(ﬁ[j7 T) = E}q‘ﬁik + ,UE,'jEl'j — KTOC()(T — T())Ekk 2T (T T()) — S()(T — T()) +f(), (l)
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where Ar and u are the isothermal Lamé elastic constants, k7 = Ar + 2u/3 is the isothermal bulk modulus,
and o, ¢, and s, are, respectively, the coefficient of volumetric thermal expansion, the specific heat at
constant strain, and the specific entropy, all in the reference state with temperature 7. The corresponding
free energy (per unit reference volume) is (0, 7y) = fo. The stress and entropy in the deformed state are the
gradients of f with respect to strain and temperature. The specific heat at constant strain, associated with
Eq. (1) is

Os o*f o T
=T| =) =-T|= | =c¢,=. 2
v (6T>e (aT2>e CVTO ( )
Once the Helmholtz free energy is specified as a function of strain and temperature, the internal energy

u = f + Ts can be expressed in terms of the same independent variables by simple substitution of Eq. (1)
and the corresponding expression for the entropy. This yields (e.g., Ziegler, 1977)
0

1 c
M(Gi/, T) = Eﬂ“Tel%k + HE;;€ij + KTOC()T()Ekk + 2—;0 (Tz — Toz) =+ ugp. (3)

In the sequel, it will be assumed that the internal energy vanishes in the reference state, so that
Uy = 0, fo = 7T0S0. (4)

However, the internal energy is a thermodynamic potential whose natural independent state variables
are strain and entropy, rather than strain and temperature, since the energy equation specifies the increment
of internal energy as

du= O'iidEi/—‘y-TdS. (5)

The desired representation u = u(e;, s) can be obtained from u = f + Ts by eliminating the temperature
in terms of strain and entropy via Eq. (1). The end result is

1 K70 Tt T
u(ey,s) = 5 Aseiy + Heyey == g (s = So)ews + 5.5 (5 = 50)" + Tols = s0). (6)
4 v

The adiabatic (isentropic) Lamé constant Ag is related to its isothermal counterpart Ay by

. 02T
As = AT +0—00K2T. (7)
Cy

The purely algebraic transition from Eqgs. (3)—(6) is simple, but little indicative of the underlying ther-
modynamics connecting Egs. (5) and (6). An independent derivation of (6), starting from the energy
equation (5), and utilizing the experimental data embedded in the Duhamel-Neumann extension of
Hooke’s law, and the assumed specific heat behavior, is therefore desirable. The systematic procedure to
achieve this, and to derive the expressions for other thermodynamic potentials, the Helmholtz free energy
f =f(e;,T), the Gibbs energy g = g(0;;,T), and the enthalpy % = h(o;;,s), is presented. The four ther-
modynamic potentials are then expressed in terms of four possible pairs of independent state variables:
(e;,T), (€;,5), (64, T), and (oy;,s). This furnishes a set of 16 alternative expressions, four for each ther-
modynamic potential. Analogous results in the scalar setting, using pressure and volume as pertinent
variables, is commonly utilized in materials science thermodynamics (Swalin, 1972; DeHoff, 1993; Ragone,
1995). The obtained general results are applied to uniaxial and spherical stress and strain states, which are
of importance in high-pressure material testing (e.g., Lubarda, 1986; Lubarda et al., 2004). Particular
attention is given to uniaxial loading under isothermal, adiabatic, constant stress, and constant strain
condition. A simple interplay of adiabatic and isothermal elastic constants in the expressions for exchanged
heat along certain thermodynamic paths is obtained.
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2. Thermodynamics potentials in terms of their natural independent state variables
The four thermodynamic potentials are derived in this section in terms of their natural independent state

variables. The derivation is in each case based only on the Duhamel-Neumann extension of Hooke’s law,
and an assumed linear dependence of the specific heat on temperature.

2.1. Internal energy u = u(e;,s)

The increment of internal energy is expressed in terms of the increments of strain and entropy by the
energy equation (5). Since u is a state function, du is a perfect differential, and the Maxwell relation holds

(agsﬁ)f B (aaT> (8)

The thermodynamic potential u = u(e;, s) is sought corresponding to the Duhamel-Neumann expression

Gij = ;VTekkéij + 2#61:/- — KTOC()(T — TO)ész (9)
and an assumed linear dependence of the specific heat on temperature
T
0
cy =cp—. 10
v 14 TO ( )

The Kronecker delta is denoted by ¢;;. By partial differentiation from Eq. (9) it follows that

aa,-j - aa,-j oT o oT
(). (7). (&), = (&) 2 .

so that the Maxwell relation (8) gives

or or
_ oy s 12
(56), = —==(&) o )

The thermodynamic definition of the specific heat at constant strain is

Os
=T — 13
o=1(5) (13)
which, in conjunction with Eq. (10), specifies the temperature gradient
or Ty
— | =—. 14
(%).-% 1
The substitution into Eq. (12) yields
oT KT(X(]T()
=————0;. 15
(ae,-,— )s o 13
The joint integration of Egs. (14) and (15) provides
KTOC()T() TO
T =— c?/ €kk +g<S—S0)+To. (16)

When this is inserted into Eq. (9), we obtain an expression for stress in terms of strain and entropy

Koo T
Oij = vSekkéij + 2#6,:/' — TCOO 0 (S — S())é,‘j. (17)

vV
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The adiabatic Lamé constant Ag is related to its isothermal counterpart A; by Eq. (7).
By using Egs. (16) and (17), the joint integration of

Ou Ou
w=(5) 7=(%). as)

yields a desired expression for the internal energy in terms of its natural independent variables ¢; and s. This
is

1 Kro T T
u(ey,s) = 5 Aseiy + peyey Tc(g S (s — so)ews + ?0% (s = 50)> + To(s — s0)- (19)

2.2. Helmholtz free energy f = f(e€;,T)

An independent derivation of the Helmholtz free energy function /' = f'(e;, T) again begins with the pair
of expressions (9) and (10). The increment of f is

df = 0jj dﬁi]‘ - SdT7 (20)

with the Maxwell relation

<666T><66) (21)

By evaluating the temperature gradient of stress from Eq. (9), and by substituting the result into Eq. (21),
we find

Os
<a€ij ) . = KTOC()éij. (22)
The integration of above, in conjunction with
Os e
- ) - 23
(aT)F 3 (23)

provides the entropy expression

0

C
S = KTO(()ﬁkk + TV(T - T()) +S(). (24)
0

By using Egs. (9) and (24), the joint integration of

(¥ _ (¥
Gi/_<a€ij>r7 °T <5T)(’ 25)

yields a desired expression for the Helmholtz free energy in terms of its natural independent variables ¢;;
and 7. This is

1 e
f(E,‘j, T) = 5/1]‘6%1( + HGUGU — KTaQ(T — T())Ek - T;b(T — T0)2 — S()T. (26)
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2.3. Gibbs energy g = g(0:;,T)
The increment of the Gibbs energy is
dg = —¢;doy; — sdT, (27)
with the Maxwell relation
O¢;; os
().~ (&), o

To derive the function g(g;, T), independently of the connection g = f — g;¢; and without tedious
change of variables, we begin with the thermoelastic stress—strain relation and an expression for the specific
heat, i.e.,

1 vr %o
=3, (al-_,- - makk%) +5 (T = To)oy, (29)
T
ep(T) = cOP?O. (30)

The first one is a simple extension of Hooke’s law to include thermal strain, and the second one is the
assumed linear dependence of the specific heat at constant stress on temperature. The thermodynamic
definition of the specific heat cp is

By differentiating Eq. (29) to evaluate the temperature gradient of strain, and by substituting the result into
the Maxwell relation (28), we find

Os o))
=—0;. 32
(66,-] ) r 3 G2)
The integration of this, in conjunction with
Os e
— ) == 33
(57) — % (33)
provides the entropy expression
0
o c
s ==+ L(T = Ty) + so. (34)
3 To

Using Egs. (29) and (34), the joint integration of

B og [ 0og
o=(a) = (&), @

yields a desired expression for the Gibbs energy in terms of its natural independent variables ¢;; and T (e.g.,
Fung, 1965; Kovalenko, 1969). This is

0

1 v o c
g(o-ijy T) = 7@ (G[jo','j — HT\;TG’%") 7§0(T — TO)O-kk — T;b(T — T‘(j)2 7S0T. (36)
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The relationship between the specific heats ¢! and ¢, can be obtained in various ways. For example, by
reconciling the entropy expressions (24) and (34), and by using the relationship

1
E€rk = 3—KTUkk +oo(T — Ty), (37)
following from (27), it is found that
&y — ) = xrogTh. (38)

2.4. Enthalpy function h = h(c;,s)

The increment of enthalpy is
dh = —eide',-j + Tds, (39)

with the Maxwell relation

(@)=~ (a). 0

To derive the function h(a;;,s), we shall again begin with the expressions (29) and (30). By partial dif-
ferentiation from Eq. (29) it follows that

aG,‘j o ae,j orT _OC() orT
().~ (@).(5).-5(@).» “

The substitution into the Maxwell relation (40) gives

or o)) or OC()T()
— | === =) 0 =—==9i 42
(). -3 (5) -3¢ @
The definition (31), in conjunction with (30), was used in the last step. The joint integration of Eq. (42)
and
oT T
) =20 43
(5).-4 “3)
provides the temperature expression
T T
T:—ao—ooﬁkk—F—g(S—So)—FTo. (44)
3cp cp

When this is substituted into Eq. (29), there follows

1 Vs (ZOTZ)
%= 2 (%‘ - makk&;,) + 30 (s = 50)3y;. (45)
The adiabatic Poisson’s ratio vy is related to its isothermal counterpart v by
vr +2u(1 + vr)a vs — 2u(l + vs)a 2Ty
VS=ET—F5 77 5 VT35 5 49=350 (46)
1 —2u(1+vr)a 14 2u(1 + vs)a 9ch,
Note that the adiabatic and isothermal Young’s moduli are related by
1 1 2T,
- = % (47)

Er Es 9’
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in variance with an expression given by Fung (1965, p. 389), where the specific heat at constant strain
appears in the denominator on the right-hand side. A simple relationship is also recorded (e.g., Chadwick,
1960)

0
Cp Ks
L 48
A kr (48)

This easily follows by noting, from Eqgs. (16) and (44), that for adiabatic loading

Koo T oo Tt
I—T= TOO Yo = 2 OOUkk- (49)
cy 3cp

Since for adiabatic loading g, = 3ksew, the substitution into (49) yields (48).
Returning to the enthalpy function, by using Eqs. (44) and (45), the joint integration of

oh on
o), 7 (R), <5°>

yields the expression for the enthalpy in terms of its natural independent variables o;; and s. This is

l Vg OC()T() T() 2
h(U,‘j,S) = —@ (O_ijo—ij — Tvso—ik) —E(S — S())O'kk +2—C§))(S —S()) + T()(S —S()). (51)

2.5. List of thermodynamic potentials in terms of their natural independent state variables

1 Koo T T:
u(ey,s) = = As€h + UeE€j — T—OOO (s — s0)em + —% (s — so)2 + To(s — s0) (52)
2 cy 2c)
1, cy 2
f(eija T) = §iT€kk + )ueijsij — KTOC()(T — T())Gkk — 2—% (T — TO) — S()T (53)
1 vr ) o C‘g 2
g(O'l'j,T):—@ O-ifaif_mgkk —g(T—To)Gkk—Z—TO(T—To) —S()T (54)
1 Vs aTo Ty 2
h(O'ij,S) = _@<aij0ij_maik> —E(S—S())O'kk +2—C?)(S_SO) +TO(S—S0) (55)

3. Internal energy in terms of four pairs of independent state variables

The internal energy was expressed in Section 2.1 in terms of its natural independent state variables as
u = u(e;,s). We now derive its representation in terms of other three pairs of independent state variables.

3.1. Function u = u(e€;, T)

We start with the relationship
M(E,‘j, T) :f(E[j, T) =+ TS. (56)
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The partial derivative with respect to strain at constant temperature is

Ou [ of Os
(aeij)r_ (aeij>r+T(§ij>T' (57)

Since

- af Os - 60’,«/
= <a€ij>7'7 (aeij)r a ( or ): (58)

we obtain

ou 0o,
o122 59
<a€i/)r 7 <5T>F 59)

By using the Duhamel-Neumann expression (9), this gives

0
< “ ) = \.Tekkéij + 2#6,] + KTO(()T()él'j. (60)
66,«/ T

On the other hand, by taking a partial derivative of Eq. (56) with respect to temperature at constant
strain, there follows

Ou Os o T
(ﬁ)‘TGﬁ)—”%’ (€D

having regard to s = —(0f/0T).. Therefore, upon joint integration of Eqs. (60) and (61), there follows

1 A
U(Eij, T) = E)"Telzck + HE;;€jj + K'TOC()T()Ekk + 2—;‘0 (TZ — TOZ) (62)

This could have been also obtained directly from the relationship u = f(e;, T) + T5, by using (24) and
(26) (e.g., Ziegler, 1977, p. 118; Haddow and Ogden, 1990, p. 165, 167). The corresponding expression for
internal energy in the case when it is assumed that ¢, = ¢! can be found in Chadwick (1960, p. 275), or
Noda et al. (2003, p. 445).

3.2. Function u = u(ay,s)

We conveniently start with the relationship
l/l(G,‘j,S) = h(G,‘j,S) + O','jfl'j. (63)

The partial differentiation with respect to stress at constant entropy is

au Gek;
T 4
(aaz‘j>s le("j"ij)s’ (4

since €; = —(0h/0a;;),. Incorporating Eq. (45), the above becomes

Ou 1 Vg
(0, ). =30 (= o) )

On the other hand, by taking a partial derivative of Eq. (63) with respect to entropy at constant stress,
there follows

Ou oh e, oo Ty
ey _ (& Y (/A A L P 66
<as>,, <as>ﬁ‘”(6s>g T3 (¢6)
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having regard to T' = (0h/0s),. Since T is given by Eq. (44), this reduces to

Ou T()
— | =T+ —(s—s0). 67
(5) ~n+ge-w (67)
The joint integration of Egs. (65) and (67) gives
1 Vs Ty 2
M(G,:,-,S) :4.‘LL<GUO-U_1—|—\)SUik) +27093(S—S0) +T0(S_S()). (68)

3.3. Function u =u(oy,T)

The derivation in this case proceeds by starting with the relationship
M(O_ij7T) :g((f,‘j7T)+O'ij€,'j+TS. (69)

The partial differentiation with respect to stress at constant temperature is

Ou Oew O¢;;
= T .
(aalj ) T ou ( 00y ) T - ( or )0 (70)

The connections were used

B og Os [ O¢;
6ij__<60'ij>r, (aai/>T_ (6T>g. (71)

Incorporating Eq. (29) into (70) yields

Ou 1 Vr o
- [ B — 5," —Tél 72
(aaij)]- ZH <aj 1+V7"O-kk j> * 3 J ( )
On the other hand, the partial derivative of Eq. (69) with respect to temperature at constant stress is
Ou B O¢;; Os o o T
()=o), 7(3) 3o

having regard to s = —(0g/0T),. The joint integration of Eqs. (72) and (73) yields a desired expression
0

1 v o c
u(oy, T) = i (Uijffz:f - TTVTGik) +§0T0kk + 2—;0(72 — 1Y) (74)

3.4. List of internal energy functions in terms of four pairs of independent state variables

1 Ko Tt T
u(ey ) = 5 Aseiy + Hegey == g (s = so)ew + 5.5 (5 = 50)" + Tols = s0) (75)
cy 2cy,
L, Y (o o
u(e;, T) = 5 Ak + pege + koo Toew + 7 (T° - Ty) (76)
0

1 Vs Ty
u(O'[j,s) = @ (O'UO'U — 1+vs6i,(> +ﬁ(s — S0)2 + TO(S — SO) (77)

P
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1 v o Y
oy T) = g (00— k) + 5 Tow 43 (12 = T (78)

4. Helmholtz free energy in terms of four pairs of independent state variables
The Helmholtz free energy was expressed in Section 2.2 in terms of its natural independent state vari-
ables as f = f(e;, T). We now derive its representation in terms of other three pairs of independent state

variables. The derivation is in many aspects analogous to that presented for the internal energy in Section 3.
We accordingly record only its essential steps.

4.1. Function f = f(€;,s)
We start with the relationship
Sfey,8) = u(ey,s) — T, (79)

to obtain

o\ (o
(), ==, ®

and
0 Ti
f = )ugGkkéij + 2/.L€ij + &(?Osoé,-j. (81)
aﬁl'j s (&7

On the other hand,

0 or Ti
(%) --(5) -3

The joint integration of Egs. (81) and (82) gives

1 Kroo 1t T
Sf(ej,8) = Eise,%k + pege; + TC—?/OOsoekk — ﬁ (s* — sé) — ToSo. (83)
4.2. Function f = f (0, T)
We start with the relationship
f(oy,T) = g0y, T) + oy€y, (84)

to obtain

() -o(),
00y ) ¢ 90y ) ¢
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and

N (v s
0y T_Z,u U gy, MO

On the other hand,

of _ %o B C?a
(ﬁ)a_ —S+§O'kk = —FO(T—T()) — 80.-

The joint integration of Egs. (86) and (87) gives

1 vr CO 2
f(o-ija T) = @ (O-ijo-ij — m02k> — 2—;0(T — To) — S()T.

4.3. Function f = f(0;,s)

We start with the relationship
f(Gij,S) = h(a,-j,s) + O',:/'Gl'j — TS,

to obtain

af - aﬁkl @6,,
(a%‘)s B le(a%‘)s +S( Os >07

af 1 Vs OC()T()
= _— /7 Bra—— 5," e 5,
(ao—ij)s 2p (6‘/ T ™ /> " 3

On the other hand,

af o 66,, oT 7T() Olo
(5).=ou(%) (&) =5 (Fou-s)

The joint integration of Egs. (91) and (92) gives

and

1 Vs b O(()T() TO 2
f(O','j,S) = @ (Gijgij — T\)So-kk> +Esakk — E(S

4.4. List of Helmholtz free energy functions in terms of four pairs of independent state variables

- Sé) - T()S().

0

2Ty

1 c
f(eija T) = E/ITeik + ,u6,‘/‘€,‘j — KTOC()(T — TO)ekk -z (T — T0)2 — SoT

1 Kroo 1
.2 TH0L0 0 2 2
f(E[j,S) = E/Lsﬁkk + /.lG[jE,‘j + C—OSOEkk — W(S — SO) —

4 |4

Tpso

7387

(93)
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1 v e
f(O'l*j,T) = @ <6ijo-ij — TTVTU]%/(> — —P(T — T())Z —S()T

2Ty
1 Vs OCoTO TO
f(O'l-j,S) = @ (O’,-j()'ij — T\{gaik> +3—C%S0'kk — 2—093(S2 — Sé) — T()S()

5. Gibbs energy in terms of four pairs of independent state variables

The Gibbs energy was expressed in Section 2.3 in terms of its natural independent state variables
g = g(oy;, T). We now derive its representation in terms of other three pairs of independent state variables,

recording only essential steps.

5.1. Function g = g(0y,s)

We start with the relationship
g(oi,s) = h(oy,s) — T,

to obtain

@g N 661:/'
(aO'ij>A- B 6ij+s( Os >a7

og 1 Vg . oo To
= (o5 — —2 640, | + 2505,
(aaii>s 2u (G] [ j) * 3¢5 0%

On the other hand,

9%\ _ () __ D%
os ), *\ os . c(},s'

The joint integration of Egs. (100) and (101) gives

and

1 Vs OC()TO TO
g(Gij,S) = —@ (O’,‘jO‘,‘j — 1-’—\)So-ik> +Esogkk —ﬁ(sz — Sé) — T()S().

P

5.2. Function g = g(€;,T)

We start with the relationship
gley, T) = f (e, T) — oyeiy,

to obtain

ag _ Gok,
do, ), “\%e, ),

(100)

(101)

(102)

(103)

(104)
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and

0
( £ > = _(;“Tekkéij + 2,[16,])
T

a€ij

On the other hand,

0 da;; 0
(a?)E = =5 — Eij(aT/)f = —5+ Kplo€rr = 7?1;(717 To) — 50.

The joint integration of Egs. (105) and (106) gives
0

I, c 2
g(eija T) = _<§/“T6ik+:u6i/€ij) —Z—JV_E)(T—T()) —S()T.
5.3. Function g = g(€;;,s)

We start with the relationship

g(Eij,S) = I/I(ij,s) — Gijeij — TS,

to obtain
ag aUkl g 60,»,-
= —€ _— —_ -
O / “\ e ), as ).
and
0 . T:
( £ > = 7(/u56kk5,'j + 2/,!6,']) + %Ooosé,-j.
Ocij / cy

On the other hand,

ag o 60',-]» 6T . TO
(&)%) ~+(5), g

The joint integration of Egs. (110) and (111) gives

1 k7o T
g(ey,s) = — (E/lseik + ue,:,-e,-j) + TC—OOOSekk - ﬁ (s* = s3) — Toso-
v v

5.4. List of Gibbs energy functions in terms of four pairs of independent state variables

1 vroo, oo e )
g(O'ij,T) :7@ O‘jjU[j*iT 7§(T7T0)0kk7277b(T7T0) 7S()T

1 Vs ) OC()T() T() P 3
g(oy,s) = T4 (%'Uz:i - m%) + 3—0%S00kk - E(S = 5) — Toso

0

1 c 2
g(e;j, T) = —(Ellreik +,Ll€,‘j€[j) _Z—;b(T — T()) —S()T

7389

(105)

(106)

(107)

(108)

(109)

(110)

(111)

(112)

(113)

(114)

(115)
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1 Ko Tt T:
g(ej,s) = — <§is€;%k + ,ue,-jeij> JrTC—Ooosekk — ﬁ(s2 - s(z)) — Toso (116)
v 4

6. Enthalpy in terms of four pairs of independent state variables

The enthalpy was expressed in Section 2.4 in terms of its natural independent variables # = h(g;;,s). We
now derive its representation in terms of other three pairs of independent variables.

6.1. Function h = h(o;,T)

We start with the relationship

h(aijaT):g(O-ijaT)+Tsa (117)
to obtain
oh O¢;;
=+ T v 118
<60'ij>r Al <6T)a' (118)
and
oh 1 Vr %o
=—— |06 — —— i — Tyd;;. 11
(60,-,—)T 2p (01] 1+vr akkél]) - 3 s (19)

On the other hand,

oh Os e
(r). (7). %7 e

The joint integration of Eqs. (119) and (120) gives

0

1 v o c
h(O’,‘j, T) = —@ (Ji/aii — ﬁ(fﬁk> +§OTOO-kk +2—£)(T2 — Toz) (121)

6.2. Function h = h(¢;,s)

We start with the relationship
(e, s) = u(ey, s) — ay€i, (122)

to obtain

Oh Gakl
_ had 12
<a€i/)s 6kl< Oei )57 (123)

oh
(aé) = _()”Sekkéij + 2#61:/'). (124)
/s

and
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On the other hand,

oh aO',“ KTOC()T() T()
(a)e:T_EU( asj)g:T+ co ekk:c_O(S_SO)—i_TO.

Vv Vv

The joint integration of Eqs. (124) and (125) gives

1, T
h(ey,s) = — (EASG,%k + ,ue,-je,-j> + ﬁ (s — 50)” + To(s — 50).
v

6.3. Function h = h(¢e;, T)

We start with the relationship
h(E,‘j, T) :f(ﬁij, T) — Gijeij — TS,

to obtain
Oh - Gakl aO','j
(aeij>r_ 6kl<a€ij>r T( or f’

oh
( ) = _(;LTekkéij + 2,1,{6,:]-) + KTOC()Téij.
aE[j T

and

On the other hand,

aj _ 60',-]- +
or ), ~ U\ or ).

The joint integration of Eqgs. (129) and (130) gives

Os b
T — ) = rr.
(EBT)E Kr0lo€p + T

0

1 c
]’l(E,'j, T) = — <21T€ik + ,uéijﬁij> + KTO(()TEkk +277V_6(T2 — TOZ)

6.4. List of enthalpy functions in terms of four pairs of independent variables

l Vs O(()T() TO 2
h(O—ij,S) = —@ <O—ijo—ij _1_|_\;Salz‘k> —@(S — S())O—kk +TC%(S —SO) + T()(S —S())
h(O’»‘ T):_L g..o-.__v—To-z -l-@TO' +§(T2_T2)
ijs 4/1 ijQij 1+V7" Kk 3 00 kk 2T() 0

1, Ti
h(ey,s) = — (E/LSEik + ,tteijeij) + ﬁ (s — 50)” + To(s — s0)
v

1 e
h(E,’j, T) = — (2/17‘6%( =+ ﬂﬁ[jE,‘j) + KTOCOTEkk + 277[/_'0 (Tz — TOZ)
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(125)

(126)

(127)

(128)

(129)

(130)

(131)

(132)

(133)

(134)

(135)
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7. Uniaxial loading and thermoelastic effect

The derived representations of thermodynamic potentials for arbitrary three-dimensional states of stress
and strain are greatly simplified in the case of uniaxial and spherical states of stress and strain. The cor-
responding results are listed in Appendices A-D. To illustrate the use of some of the derived formulas,
consider uniaxial loading paths shown in Fig. 1. The path OAB is an adiabatic (fast loading) path, the path
OC is an isothermal (slow loading) path, the path AC is a constant stress path, and the path BC is a
constant longitudinal strain path. Along the adiabatic path OAB (see the expression for u(g,s) from
Appendix A)

I,

while along the isothermal path OC (see the expressions for f(g,T) and g(g,T) from Appendix A)

. 1 .
f—fb:go—g:ﬁo'z’ Jo = g0 = —Toso. (137)
T
The temperature drop along the adiabatic path is
oo To
T—Ty=——+ 138
0 3ch, 7 (138)

in accord with Kelvin’s formula describing Joule’s thermoelastic effect (Fung, 1965, p. 388). The entropy
increase along the isothermal path is
sfso:%a, (139)
with the corresponding absorbed heat given by Ty(s — sp).
The heat absorbed along the constant stress path AC is equal to the enthalpy change
O(()T() O((Z)T() )

he —hy =——

3 g —@0/4. (140)

Op=0c¢ "

€
>

O¢

€a €=E&¢

Fig. 1. Uniaxial loading along isothermal path OC, and along adiabatic path OAB. The paths AC and BC are the constants stress and
constant longitudinal strain paths, respectively.
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This is in agreement with the result following from

e CO
7)dT = T —T2). 141
| ernar=gr -1 (141)
The heat absorbed along the constant longitudinal strain path BC is
1 OC()TO 1
uc —ugp = (Z—E'TGZC+TGC) _2E50'z2;7 (142)
which gives
OC()T() ES OC2T0

This can be confirmed by integrating

sc sc T() o
/STds:/g [To—kg(s—so—?a)}ds, (144)

SB SB

with the stress variation, along the path BC, given by

Es o Ty
0=—0,—

20 (s —s0). 145
Er 3C°p s(s — s0) (145)

For metals, the second term on the right-hand side of Eq. (143) is much smaller than the first term, being
associated with small departures of ¢, and ¢y from their reference values ¢} and ¢, inherent in linear
approximations cp = 3T /Ty and ¢y = ¢, T/ Ty, which are valid for sufficiently small temperature differences
(T - Ty).

An alternative derivation of (143) proceeds by noting that do = —Erayd7/3 along the path BC
(because the longitudinal component of strain is fixed along that path). The corresponding increment of

entropy is

0

_ % g,
ds =3 do + 70dT = TO ES =Tdr, (146)

recalling the relationship (47) between isothermal and adiabatic Young’s moduli. Therefore,

/TC rds =< B2 g2y (147)
T " 2T, Es BJ:

B

The incorporation of Eq. (138) reproduces Eq. (143).
Yet another derivation is possible by starting from an expression for the heat increment in terms of the
latent and specific heats, i.e.,

T'ds = [;;de; + cydT. (148)

The components of the latent heat tensor at constant strain are defined by

. Os
lij = T<agij) = KTO((]Téij, (149)

which gives

Tds = KTO(()Tdek +cy dT7 (150)
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Since, along the path BC,
2
dékk=§(1+vr)060dT, (151)

the substitution into Eq. (150), and integration from 73 to Tc = Ty, gives Eq. (143). This derivation is
facilitated by noting that, in view of Eq. (46),

2Ty vs — vr
1 =2 7 152
1+ B =t (12

The individual contributions of the latent and specific heat to total heat absorbed along the path BC are

¢ 1—2v
/BchTzl_zv‘;(uc—uB), (153)
Chde, — oS 154
; lij Eij— I_ZVT(MC—MB). ( 5 )

The contribution given by (153) is smaller than (uc — up), because vy > vr. Since the lateral strain is not
held constant along the path BC, there is a small but positive contribution to absorbed heat from the latent
heat, and this is represented by Eq. (154). Both, Eqgs. (143) and (153) display in their structure a simple
combination of adiabatic and isothermal elastic constants, via the ratio terms Es/Er and

ﬁ&zl—ZVS
COPET 1*2\/7'.

(155)

8. Conclusions

The thermodynamic analysis is presented which yields the expressions for all thermodynamic potentials
(internal energy, Helmholtz free energy, Gibbs energy, and enthalpy) in terms of four possible pairs of
independent state variables from the set of stress, strain, temperature, and entropy. The derived results for
some of the considered potentials, and for the particular pairs of independent state variables, are well-
known from linear thermoelasticity, but are presented here in conjunction with other results for the
completeness of general formulation. The presented analysis is, in essence, an extension of the classical
thermodynamics analysis, which is cast within the scalar setting (involving pressure and volume), to the
three-dimensional tensorial setting (involving stress and strain tensors). When the stress is an independent
variable, the thermodynamic potentials involve in their structure the specific heat cp. With the strain as an
independent variable, the specific heat ¢, appears in the representation of the thermodynamic potentials. If
the temperature is used as an independent variable, the thermodynamic potentials are expressed in terms of
the isothermal elastic constants (4r, vy, k7). With the entropy as an independent variable, the adiabatic
counterparts (1, Vs, Ks) appear in the representation of the thermodynamic potentials. If a thermodynamic
potential contains a mixed strain—entropy term, such as es, either the ratio kr/c), or ks /c% multiplies that
term. The presented thermodynamic analysis also delivers the relationships between different types of in-
volved elastic and thermodynamic constants. The general results are applied to uniaxial and spherical states
of stress and strain, with a particular attention given to uniaxial loading under isothermal, adiabatic,
constant stress, and constant strain conditions. A simple combination of adiabatic and isothermal elastic
constants appears in the expression for the exchanged heat along the constant strain path.
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Appendix A. Thermodynamic potentials for uniaxial stress
For the uniaxial state of stress
0;j = 00;10;, 00 = 6, oy =o.

The corresponding thermodynamic potentials are

1 , T 2
= — _— — T _
u(a,s) 2Es0 2] (s —s0)” + To(s — o),
u(e,T) ——Jz+@Ta+é(T2—T2)
’ 2E; 3 2T, on
I 5, wh 0 (2_ 2
S T
f(aﬁs) 2ES + 309) 2 %(S SO) 0505
f(o,T) Laz—é(T—T) soT
) ZET 2T0 0 0L
1 oo T 0,5
g(a,s)——Z—ES 2—1-370?3 00 5 ?J(S s5) — Toso,
1 ) o C?)
g(a,T)——Ea _?(T_TO)G__O( —To) —soT,
h(o,s) = 1o %l (s — 50)0 + == (s — 50)° + To(s — 50)
’ 2ES 3COP 2 (1]3 ’
h(o,T) = — 0" +@Ta+i(T2 - T9)
’ 2E; 37T 0

The constitutive equations are
o vr %o
i ==—10101 ————3; — (T — T}) 0y,
€ij 2/1( 101 1+ vy ./) + 3( 0)3y
or
c Vs oo To
5= (000 =20y ) 2 (s = 50)3,
€ 2,u( T T j>+3cg(s $0)9y

and

0
oo 4
S—8)=—0+=>

yot (T T).
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Appendix B. Thermodynamic potentials for uniaxial strain
For the uniaxial state of strain
6,‘]' = 65,']5]‘1, 6,‘]'61']' = 62, €k — €.

The corresponding thermodynamic potentials are

1 Ko It T
u(e,s) = 3 (Zs +2u)€* — —TCOO 0 (s —so)e+ —2000 (s — so)2 + To(s — s0),
v v
1 2 o 2
u(e, T) = = (Ar + 20)€* + kroToe + ~—= (T* — Ty)),
2 27
1 R KT(X()TO To
fle,s) = 3 (Zs +2u)E + ) So€ — 30 (s* — 53) — Toso,
1 A 2 (1)/ 2
f(e,T):—(AT+2u)e —KTOC()(T—T())E——(T—T()) —S()T7
2 2T
1 Koo Tt Ti
g(es) = —E()»S +2u)e* + Tc?f O 5e — ﬁ(s2 —55) — Toso,

1 Y
g(E, T) = _E(AT + 2/1)62 —2—;0(T — T())2 —S()T,

1 T,
he,s) = =3 (s + 2u)€ + ﬁ(s —50) + To(s — 50),
Vv

1 0
hle,T) = =5 Ur +20)€ + raTe + 2"’—;0 (T — T2).

The constitutive equations are

O-ij = 6(;LT51']' —+ 2u5i15j1) — KTOC()(T — TO)éijv

or
Ks(x()T()
aij = 6()\.550‘ + 2,“,5,1511) — co (S — S())éij,
P
and

0
s — So = Kpolg€ +C—V(T —T).
Ty

Appendix C. Thermodynamic potentials for spherical stress

For the spherical state of stress

2
0y =060y, 0,0, =307, oy =30.
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The corresponding thermodynamic potentials are

T;
u(a,s) = %a - ﬁ(s —50)" + To(s — 50),

1 0
M(G,T):—02+O{0TO'+C—P(T2—T02),

2Kr 2T,
f(o,5) :%Ks 2—1-0(2—;0 —ﬁ(sz—so)—Toso,
f(o,T) 2—KTO'2 —%(T— To)” —soT,
gl025) = = 50" + b0 = 514 (= F) = T
g(o,T) = —TTO'Z — oy(T — Ty)o — C—i(r —Ty)" — 50T,
h(a,s):—i z—ag—go( S0)0'+2?D(S—S0)2+T0(S—So),

1 c
7)=——2o Tyo + =L (T* - T?).
h(a,T) 2KTG + o 06—|—2T0( o)

The constitutive equations are

=+ 2T -T,

€=3 T3 T~
or

o

6_3165‘ 3?3(S SO)’
and

Appendix D. Thermodynamic potentials for spherical strain
For the spherical strain
€j = 651:/', €;j€ij = 362, €rie — 3e.

The corresponding thermodynamic potentials are

3iran Tt Ti
u(g,s) = 5’6562 _ TC?/O 0 (S — S())E“Fﬁ(s _So)z + TO(S —S()),

9 e
u(e,T) = EKTez + 3xrogThe + ﬁ (T* - T3,
0
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. 9 5 3rrogTh Ty ,» >
,8) = 2 Kg€ L0 g L0 (2~ 52) — Toso,
f(e,s) 3 g€+ ) So€ 2 (s* —s35) S0

9 0
fleT)= EKTGZ — 3o (T — Tp)e — ﬁ(T —Tp)* — 50T,
0

9 ) 3KTO(0T0 To

g(ﬁ,S) = _EKSG —|—TSE — E(SJ — S(Z)) — T()S()7
9 Y
g(67 T) = _EKTEZ —2—71/})(7'_ T(])2 _S()T,
9 T
h(e,s) = 75}6562 +ﬁ(s — so)2 + To(s — s0),
0

9
h(E,T) = —EKT€2+3KTO(0T€+;—]V,(T2 — Toz)
0

The constitutive equations are

g = 3KT€ — KTOC()(T — To),

or
K50l T
0 = 3Kse — — (()) % (s — s0),
Cp
and
&
S —8) = 3KTOC()€+—V(T — To)
Ty
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