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Abstract

The four thermodynamic potentials, the internal energy u ¼ uð�ij; sÞ, the Helmholtz free energy f ¼ f ð�ij; T Þ, the
Gibbs energy g ¼ gðrij; T Þ and the enthalpy h ¼ hðrij; sÞ are derived, independently of each other, by using the Duh-

amel–Neumann extension of Hooke’s law and an assumed linear dependence of the specific heat on temperature. A

systematic procedure is then presented to express all thermodynamic potentials in terms of four possible pairs of

independent state variables. This procedure circumvents a tedious transition from one potential to another, based on

the formal change of variables, and inversions of the stress–strain and entropy–temperature relations. The general

results are applied to uniaxial loading paths under isothermal, adiabatic, constant stress, and constant strain conditions.

An interplay of adiabatic and isothermal elastic constants in the expressions for exchanged heat along certain ther-

modynamic paths is indicated.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The structure of the constitutive equations relating the stress, strain, entropy, and temperature in linear

thermoelasticity is well-known (e.g., Boley and Weiner, 1960; Sneddon, 1974). Most commonly, the deri-

vation of these equations proceeds by assuming a quadratic representation of the Helmholtz free energy in

terms of strain and temperature, with the coefficients specified in accord with the observed isothermal

elastic behavior, the coefficient of thermal expansion, and the specific heat. This yields (e.g., Kovalenko,

1969)
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where kT and l are the isothermal Lam�e elastic constants, jT ¼ kT þ 2l=3 is the isothermal bulk modulus,

and a0, c0V , and s0 are, respectively, the coefficient of volumetric thermal expansion, the specific heat at

constant strain, and the specific entropy, all in the reference state with temperature T0. The corresponding
free energy (per unit reference volume) is f ð0; T0Þ ¼ f0. The stress and entropy in the deformed state are the
gradients of f with respect to strain and temperature. The specific heat at constant strain, associated with

Eq. (1) is
cV ¼ T
os
oT

� �
�

¼ �T
o2f
oT 2

� �
�

¼ c0V
T
T0

: ð2Þ
Once the Helmholtz free energy is specified as a function of strain and temperature, the internal energy

u ¼ f þ Ts can be expressed in terms of the same independent variables by simple substitution of Eq. (1)

and the corresponding expression for the entropy. This yields (e.g., Ziegler, 1977)
uð�ij; T Þ ¼
1

2
kT �

2
kk þ l�ij�ij þ jTa0T0�kk þ

c0V
2T0

ðT 2 � T 2
0 Þ þ u0: ð3Þ
In the sequel, it will be assumed that the internal energy vanishes in the reference state, so that
u0 ¼ 0; f0 ¼ �T0s0: ð4Þ
However, the internal energy is a thermodynamic potential whose natural independent state variables

are strain and entropy, rather than strain and temperature, since the energy equation specifies the increment

of internal energy as
du ¼ rij d�ij þ T ds: ð5Þ
The desired representation u ¼ uð�ij; sÞ can be obtained from u ¼ f þ Ts by eliminating the temperature

in terms of strain and entropy via Eq. (1). The end result is
uð�ij; sÞ ¼
1

2
kS�

2
kk þ l�ij�ij �

jTa0T0
c0V

ðs� s0Þ�kk þ
T0
2c0V

ðs� s0Þ2 þ T0ðs� s0Þ: ð6Þ
The adiabatic (isentropic) Lam�e constant kS is related to its isothermal counterpart kT by
kS ¼ kT þ
a20T0
c0V

j2
T : ð7Þ
The purely algebraic transition from Eqs. (3)–(6) is simple, but little indicative of the underlying ther-

modynamics connecting Eqs. (5) and (6). An independent derivation of (6), starting from the energy

equation (5), and utilizing the experimental data embedded in the Duhamel–Neumann extension of

Hooke’s law, and the assumed specific heat behavior, is therefore desirable. The systematic procedure to

achieve this, and to derive the expressions for other thermodynamic potentials, the Helmholtz free energy

f ¼ f ð�ij; T Þ, the Gibbs energy g ¼ gðrij; T Þ, and the enthalpy h ¼ hðrij; sÞ, is presented. The four ther-
modynamic potentials are then expressed in terms of four possible pairs of independent state variables:

ð�ij; T Þ, ð�ij; sÞ, ðrij; T Þ, and ðrij; sÞ. This furnishes a set of 16 alternative expressions, four for each ther-

modynamic potential. Analogous results in the scalar setting, using pressure and volume as pertinent

variables, is commonly utilized in materials science thermodynamics (Swalin, 1972; DeHoff, 1993; Ragone,

1995). The obtained general results are applied to uniaxial and spherical stress and strain states, which are

of importance in high-pressure material testing (e.g., Lubarda, 1986; Lubarda et al., 2004). Particular

attention is given to uniaxial loading under isothermal, adiabatic, constant stress, and constant strain

condition. A simple interplay of adiabatic and isothermal elastic constants in the expressions for exchanged
heat along certain thermodynamic paths is obtained.



V.A. Lubarda / International Journal of Solids and Structures 41 (2004) 7377–7398 7379
2. Thermodynamics potentials in terms of their natural independent state variables

The four thermodynamic potentials are derived in this section in terms of their natural independent state

variables. The derivation is in each case based only on the Duhamel–Neumann extension of Hooke’s law,
and an assumed linear dependence of the specific heat on temperature.
2.1. Internal energy u ¼ u(�ij; s)

The increment of internal energy is expressed in terms of the increments of strain and entropy by the

energy equation (5). Since u is a state function, du is a perfect differential, and the Maxwell relation holds
orij

os

� �
�

¼ oT
o�ij

� �
s

: ð8Þ
The thermodynamic potential u ¼ uð�ij; sÞ is sought corresponding to the Duhamel–Neumann expression
rij ¼ kT �kkdij þ 2l�ij � jTa0ðT � T0Þdij; ð9Þ

and an assumed linear dependence of the specific heat on temperature
cV ¼ c0V
T
T0

: ð10Þ
The Kronecker delta is denoted by dij. By partial differentiation from Eq. (9) it follows that
orij

os

� �
�

¼ orij

oT

� �
�

oT
os

� �
�

¼ �jTa0
oT
os

� �
�

dij; ð11Þ
so that the Maxwell relation (8) gives
oT
o�ij

� �
s

¼ �jTa0
oT
os

� �
�

dij: ð12Þ
The thermodynamic definition of the specific heat at constant strain is
cV ¼ T
os
oT

� �
�

; ð13Þ
which, in conjunction with Eq. (10), specifies the temperature gradient
oT
os

� �
�

¼ T0
c0V

: ð14Þ
The substitution into Eq. (12) yields
oT
o�ij

� �
s

¼ � jTa0T0
c0V

dij: ð15Þ
The joint integration of Eqs. (14) and (15) provides
T ¼ � jTa0T0
c0V

�kk þ
T0
c0V

ðs� s0Þ þ T0: ð16Þ
When this is inserted into Eq. (9), we obtain an expression for stress in terms of strain and entropy
rij ¼ kS�kkdij þ 2l�ij �
jTa0T0
c0V

ðs� s0Þdij: ð17Þ
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The adiabatic Lam�e constant kS is related to its isothermal counterpart kT by Eq. (7).

By using Eqs. (16) and (17), the joint integration of
rij ¼
ou
o�ij

� �
s

; T ¼ ou
os

� �
�

; ð18Þ
yields a desired expression for the internal energy in terms of its natural independent variables �ij and s. This
is
uð�ij; sÞ ¼
1

2
kS�

2
kk þ l�ij�ij �

jTa0T0
c0V

ðs� s0Þ�kk þ
T0
2c0V

ðs� s0Þ2 þ T0ðs� s0Þ: ð19Þ
2.2. Helmholtz free energy f ¼ f (�ij; T)

An independent derivation of the Helmholtz free energy function f ¼ f ð�ij; T Þ again begins with the pair

of expressions (9) and (10). The increment of f is
df ¼ rij d�ij � sdT ; ð20Þ
with the Maxwell relation
orij

oT

� �
�

¼ � os
o�ij

� �
T

: ð21Þ
By evaluating the temperature gradient of stress from Eq. (9), and by substituting the result into Eq. (21),

we find
os
o�ij

� �
T

¼ jTa0dij: ð22Þ
The integration of above, in conjunction with
os
oT

� �
�

¼ c0V
T0

; ð23Þ
provides the entropy expression
s ¼ jTa0�kk þ
c0V
T0

ðT � T0Þ þ s0: ð24Þ
By using Eqs. (9) and (24), the joint integration of
rij ¼
of
o�ij

� �
T

; s ¼ � of
oT

� �
�

; ð25Þ
yields a desired expression for the Helmholtz free energy in terms of its natural independent variables �ij
and T . This is
f ð�ij; T Þ ¼
1

2
kT �

2
kk þ l�ij�ij � jTa0ðT � T0Þ�kk �

c0V
2T0

ðT � T0Þ2 � s0T : ð26Þ
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2.3. Gibbs energy g ¼ g(rij; T)

The increment of the Gibbs energy is
dg ¼ ��ij drij � sdT ; ð27Þ
with the Maxwell relation
o�ij
oT

� �
r

¼ os
orij

� �
T

: ð28Þ
To derive the function gðrij; T Þ, independently of the connection g ¼ f � rij�ij and without tedious

change of variables, we begin with the thermoelastic stress–strain relation and an expression for the specific

heat, i.e.,
�ij ¼
1

2l
rij

�
� mT
1þ mT

rkkdij

�
þ a0

3
ðT � T0Þdij; ð29Þ

cP ðT Þ ¼ c0P
T
T0

: ð30Þ
The first one is a simple extension of Hooke’s law to include thermal strain, and the second one is the

assumed linear dependence of the specific heat at constant stress on temperature. The thermodynamic

definition of the specific heat cP is
cP ¼ T
os
oT

� �
r

: ð31Þ
By differentiating Eq. (29) to evaluate the temperature gradient of strain, and by substituting the result into
the Maxwell relation (28), we find
os
orij

� �
T

¼ a0
3
dij: ð32Þ
The integration of this, in conjunction with
os
oT

� �
r

¼ c0P
T0

; ð33Þ
provides the entropy expression
s ¼ a0
3
rkk þ

c0P
T0

ðT � T0Þ þ s0: ð34Þ
Using Eqs. (29) and (34), the joint integration of
�ij ¼ � og
orij

� �
T

; s ¼ � og
oT

� �
r

; ð35Þ
yields a desired expression for the Gibbs energy in terms of its natural independent variables rij and T (e.g.,
Fung, 1965; Kovalenko, 1969). This is
gðrij; T Þ ¼ � 1

4l
rijrij

�
� mT
1þ mT

r2
kk

�
� a0

3
ðT � T0Þrkk �

c0P
2T0

ðT � T0Þ2 � s0T : ð36Þ
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The relationship between the specific heats c0P and c0V can be obtained in various ways. For example, by

reconciling the entropy expressions (24) and (34), and by using the relationship
�kk ¼
1

3jT
rkk þ a0ðT � T0Þ; ð37Þ
following from (27), it is found that
c0P � c0V ¼ jTa
2
0T0: ð38Þ
2.4. Enthalpy function h ¼ h(rij; s)

The increment of enthalpy is
dh ¼ ��ij drij þ T ds; ð39Þ

with the Maxwell relation
o�ij
os

� �
r

¼ � oT
orij

� �
s

: ð40Þ
To derive the function hðrij; sÞ, we shall again begin with the expressions (29) and (30). By partial dif-

ferentiation from Eq. (29) it follows that
o�ij
os

� �
r

¼ o�ij
oT

� �
r

oT
os

� �
r

¼ a0
3

oT
os

� �
r

dij: ð41Þ
The substitution into the Maxwell relation (40) gives
oT
orij

� �
s

¼ � a0
3

oT
os

� �
r

dij ¼ � a0T0
3c0P

dij: ð42Þ
The definition (31), in conjunction with (30), was used in the last step. The joint integration of Eq. (42)

and
oT
os

� �
r

¼ T0
c0P

; ð43Þ
provides the temperature expression
T ¼ � a0T0
3c0P

rkk þ
T0
c0P

ðs� s0Þ þ T0: ð44Þ
When this is substituted into Eq. (29), there follows
�ij ¼
1

2l
rij

�
� mS
1þ mS

rkkdij

�
þ a0T0

3c0P
ðs� s0Þdij: ð45Þ
The adiabatic Poisson’s ratio mS is related to its isothermal counterpart mT by
mS ¼
mT þ 2lð1þ mT Þa
1� 2lð1þ mT Þa

; mT ¼ mS � 2lð1þ mSÞa
1þ 2lð1þ mSÞa

; a ¼ a20T0
9c0P

: ð46Þ
Note that the adiabatic and isothermal Young’s moduli are related by
1

ET
� 1

ES
¼ a20T0

9c0P
; ð47Þ
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in variance with an expression given by Fung (1965, p. 389), where the specific heat at constant strain

appears in the denominator on the right-hand side. A simple relationship is also recorded (e.g., Chadwick,

1960)
c0P
c0V

¼ jS

jT
: ð48Þ
This easily follows by noting, from Eqs. (16) and (44), that for adiabatic loading
T0 � T ¼ jTa0T0
c0V

�kk ¼
a0T0
3c0P

rkk: ð49Þ
Since for adiabatic loading rkk ¼ 3jS�kk, the substitution into (49) yields (48).

Returning to the enthalpy function, by using Eqs. (44) and (45), the joint integration of
�ij ¼ � oh
orij

� �
s

; T ¼ oh
os

� �
r

; ð50Þ
yields the expression for the enthalpy in terms of its natural independent variables rij and s. This is
hðrij; sÞ ¼ � 1

4l
rijrij

�
� mS
1þ mS

r2
kk

�
� a0T0

3c0P
ðs� s0Þrkk þ

T0
2c0P

ðs� s0Þ2 þ T0ðs� s0Þ: ð51Þ
2.5. List of thermodynamic potentials in terms of their natural independent state variables
uð�ij; sÞ ¼
1

2
kS�

2
kk þ l�ij�ij �

jTa0T0
c0V

ðs� s0Þ�kk þ
T0
2c0V

ðs� s0Þ2 þ T0ðs� s0Þ ð52Þ

f ð�ij; T Þ ¼
1

2
kT �

2
kk þ l�ij�ij � jTa0ðT � T0Þ�kk �

c0V
2T0

ðT � T0Þ2 � s0T ð53Þ

gðrij; T Þ ¼ � 1

4l
rijrij

�
� mT
1þ mT

r2
kk

�
� a0

3
ðT � T0Þrkk �

c0P
2T0

ðT � T0Þ2 � s0T ð54Þ

hðrij; sÞ ¼ � 1

4l
rijrij

�
� mS
1þ mS

r2
kk

�
� a0T0

3c0P
ðs� s0Þrkk þ

T0
2c0P

ðs� s0Þ2 þ T0ðs� s0Þ ð55Þ
3. Internal energy in terms of four pairs of independent state variables

The internal energy was expressed in Section 2.1 in terms of its natural independent state variables as

u ¼ uð�ij; sÞ. We now derive its representation in terms of other three pairs of independent state variables.
3.1. Function u ¼ u(�ij; T)

We start with the relationship
uð�ij; T Þ ¼ f ð�ij; T Þ þ Ts: ð56Þ
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The partial derivative with respect to strain at constant temperature is
ou
o�ij

� �
T

¼ of
o�ij

� �
T

þ T
os
o�ij

� �
T

: ð57Þ
Since
rij ¼
of
o�ij

� �
T

;
os
o�ij

� �
T

¼ � orij

oT

� �
�

; ð58Þ
we obtain
ou
o�ij

� �
T

¼ rij � T
orij

oT

� �
�

: ð59Þ
By using the Duhamel–Neumann expression (9), this gives
ou
o�ij

� �
T

¼ kT �kkdij þ 2l�ij þ jTa0T0dij: ð60Þ
On the other hand, by taking a partial derivative of Eq. (56) with respect to temperature at constant

strain, there follows
ou
oT

� �
�

¼ T
os
oT

� �
�

¼ c0V
T
T0

; ð61Þ
having regard to s ¼ �ðof =oT Þ�. Therefore, upon joint integration of Eqs. (60) and (61), there follows
uð�ij; T Þ ¼
1

2
kT �

2
kk þ l�ij�ij þ jTa0T0�kk þ

c0V
2T0

ðT 2 � T 2
0 Þ: ð62Þ
This could have been also obtained directly from the relationship u ¼ f ð�ij; T Þ þ Ts, by using (24) and

(26) (e.g., Ziegler, 1977, p. 118; Haddow and Ogden, 1990, p. 165, 167). The corresponding expression for

internal energy in the case when it is assumed that cV ¼ c0V can be found in Chadwick (1960, p. 275), or
Noda et al. (2003, p. 445).

3.2. Function u ¼ u(rij; s)

We conveniently start with the relationship
uðrij; sÞ ¼ hðrij; sÞ þ rij�ij: ð63Þ

The partial differentiation with respect to stress at constant entropy is
ou
orij

� �
s

¼ rkl
o�kl
orij

� �
s

; ð64Þ
since �ij ¼ �ðoh=orijÞs. Incorporating Eq. (45), the above becomes
ou
orij

� �
s

¼ 1

2l
rij

�
� mS
1þ mS

rkkdij

�
: ð65Þ
On the other hand, by taking a partial derivative of Eq. (63) with respect to entropy at constant stress,

there follows
ou
os

� �
r

¼ oh
os

� �
r

þ rij
o�ij
os

� �
r

¼ T þ a0T0
3c0P

rkk; ð66Þ
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having regard to T ¼ ðoh=osÞr. Since T is given by Eq. (44), this reduces to
ou
os

� �
r

¼ T0 þ
T0
c0P

ðs� s0Þ: ð67Þ
The joint integration of Eqs. (65) and (67) gives
uðrij; sÞ ¼
1

4l
rijrij

�
� mS
1þ mS

r2
kk

�
þ T0
2c0P

ðs� s0Þ2 þ T0ðs� s0Þ: ð68Þ
3.3. Function u ¼ u(rij; T)

The derivation in this case proceeds by starting with the relationship
uðrij; T Þ ¼ gðrij; T Þ þ rij�ij þ Ts: ð69Þ

The partial differentiation with respect to stress at constant temperature is
ou
orij

� �
T

¼ rkl
o�kl
orij

� �
T

þ T
o�ij
oT

� �
r

: ð70Þ
The connections were used
�ij ¼ � og
orij

� �
T

;
os
orij

� �
T

¼ o�ij
oT

� �
r

: ð71Þ
Incorporating Eq. (29) into (70) yields
ou
orij

� �
T

¼ 1

2l
rij

�
� mT
1þ mT

rkkdij

�
þ a0

3
Tdij: ð72Þ
On the other hand, the partial derivative of Eq. (69) with respect to temperature at constant stress is
ou
oT

� �
r

¼ rij
o�ij
oT

� �
r

þ T
os
oT

� �
r

¼ a0
3
rkk þ c0P

T
T0

; ð73Þ
having regard to s ¼ �ðog=oT Þr. The joint integration of Eqs. (72) and (73) yields a desired expression
uðrij; T Þ ¼
1

4l
rijrij

�
� mT
1þ mT

r2
kk

�
þ a0

3
Trkk þ

c0P
2T0

ðT 2 � T 2
0 Þ: ð74Þ
3.4. List of internal energy functions in terms of four pairs of independent state variables
uð�ij; sÞ ¼
1

2
kS�

2
kk þ l�ij�ij �

jTa0T0
c0V

ðs� s0Þ�kk þ
T0
2c0V

ðs� s0Þ2 þ T0ðs� s0Þ ð75Þ

uð�ij; T Þ ¼
1

2
kT �

2
kk þ l�ij�ij þ jTa0T0�kk þ

c0V
2T0

ðT 2 � T 2
0 Þ ð76Þ

uðrij; sÞ ¼
1

4l
rijrij

�
� mS
1þ mS

r2
kk

�
þ T0
2c0P

ðs� s0Þ2 þ T0ðs� s0Þ ð77Þ
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uðrij; T Þ ¼
1

4l
rijrij

�
� mT
1þ mT

r2
kk

�
þ a0

3
Trkk þ

c0P
2T0

ðT 2 � T 2
0 Þ ð78Þ
4. Helmholtz free energy in terms of four pairs of independent state variables

The Helmholtz free energy was expressed in Section 2.2 in terms of its natural independent state vari-

ables as f ¼ f ð�ij; T Þ. We now derive its representation in terms of other three pairs of independent state
variables. The derivation is in many aspects analogous to that presented for the internal energy in Section 3.

We accordingly record only its essential steps.
4.1. Function f ¼ f (�ij; s)

We start with the relationship
f ð�ij; sÞ ¼ uð�ij; sÞ � Ts; ð79Þ
to obtain
of
o�ij

� �
s

¼ rij � s
orij

os

� �
�

; ð80Þ
and
of
o�ij

� �
s

¼ kS�kkdij þ 2l�ij þ
jTa0T0
c0V

s0dij: ð81Þ
On the other hand,
of
os

� �
�

¼ �s
oT
os

� �
�

¼ � T0
c0V

s: ð82Þ
The joint integration of Eqs. (81) and (82) gives
f ð�ij; sÞ ¼
1

2
kS�

2
kk þ l�ij�ij þ

jTa0T0
c0V

s0�kk �
T0
2c0V

ðs2 � s20Þ � T0s0: ð83Þ
4.2. Function f ¼ f (rij; T)

We start with the relationship
f ðrij; T Þ ¼ gðrij; T Þ þ rij�ij; ð84Þ
to obtain
of
orij

� �
T

¼ rkl
o�kl
orij

� �
T

; ð85Þ
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and
of
orij

� �
T

¼ 1

2l
rij

�
� mT
1þ mT

rkkdij

�
: ð86Þ
On the other hand,
of
oT

� �
r

¼ �sþ a0
3
rkk ¼ � c0P

T0
ðT � T0Þ � s0: ð87Þ
The joint integration of Eqs. (86) and (87) gives
f ðrij; T Þ ¼
1

4l
rijrij

�
� mT
1þ mT

r2
kk

�
� c0P
2T0

ðT � T0Þ2 � s0T : ð88Þ
4.3. Function f ¼ f (rij; s)

We start with the relationship
f ðrij; sÞ ¼ hðrij; sÞ þ rij�ij � Ts; ð89Þ
to obtain
of
orij

� �
s

¼ rkl
o�kl
orij

� �
s

þ s
o�ij
os

� �
r

; ð90Þ
and
of
orij

� �
s

¼ 1

2l
rij

�
� mS
1þ mS

rkkdij

�
þ a0T0

3c0P
sdij: ð91Þ
On the other hand,
of
os

� �
r

¼ rij
o�ij
os

� �
r

� s
oT
os

� �
r

¼ T0
c0P

a0
3
rkk

�
� s

�
: ð92Þ
The joint integration of Eqs. (91) and (92) gives
f ðrij; sÞ ¼
1

4l
rijrij

�
� mS
1þ mS

r2
kk

�
þ a0T0

3c0P
srkk �

T0
2c0P

ðs2 � s20Þ � T0s0: ð93Þ
4.4. List of Helmholtz free energy functions in terms of four pairs of independent state variables
f ð�ij; T Þ ¼
1

2
kT �

2
kk þ l�ij�ij � jTa0ðT � T0Þ�kk �

c0V
2T0

ðT � T0Þ2 � s0T ð94Þ

f ð�ij; sÞ ¼
1

2
kS�

2
kk þ l�ij�ij þ

jTa0T0
c0V

s0�kk �
T0
2c0V

ðs2 � s20Þ � T0s0 ð95Þ
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f ðrij; T Þ ¼
1

4l
rijrij

�
� mT
1þ mT

r2
kk

�
� c0P
2T0

ðT � T0Þ2 � s0T ð96Þ

f ðrij; sÞ ¼
1

4l
rijrij

�
� mS
1þ mS

r2
kk

�
þ a0T0

3c0P
srkk �

T0
2c0P

ðs2 � s20Þ � T0s0 ð97Þ
5. Gibbs energy in terms of four pairs of independent state variables

The Gibbs energy was expressed in Section 2.3 in terms of its natural independent state variables

g ¼ gðrij; T Þ. We now derive its representation in terms of other three pairs of independent state variables,

recording only essential steps.
5.1. Function g ¼ g(rij; s)

We start with the relationship
gðrij; sÞ ¼ hðrij; sÞ � Ts; ð98Þ
to obtain
og
orij

� �
s

¼ ��ij þ s
o�ij
os

� �
r

; ð99Þ
and
og
orij

� �
s

¼ � 1

2l
rij

�
� mS
1þ mS

rkkdij

�
þ a0T0

3c0P
s0dij: ð100Þ
On the other hand,
og
os

� �
r

¼ �s
oT
os

� �
r

¼ � T0
c0P

s: ð101Þ
The joint integration of Eqs. (100) and (101) gives
gðrij; sÞ ¼ � 1

4l
rijrij

�
� mS
1þ mS

r2
kk

�
þ a0T0

3c0P
s0rkk �

T0
2c0P

ðs2 � s20Þ � T0s0: ð102Þ
5.2. Function g ¼ g(�ij; T)

We start with the relationship
gð�ij; T Þ ¼ f ð�ij; T Þ � rij�ij; ð103Þ
to obtain
og
orij

� �
T

¼ ��kl
orkl

o�ij

� �
T

; ð104Þ
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and
og
o�ij

� �
T

¼ �ðkT �kkdij þ 2l�ijÞ: ð105Þ
On the other hand,
og
oT

� �
�

¼ �s� �ij
orij

oT

� �
�

¼ �sþ jTa0�kk ¼ � c0V
T0

ðT � T0Þ � s0: ð106Þ
The joint integration of Eqs. (105) and (106) gives
gð�ij; T Þ ¼ � 1

2
kT �

2
kk

�
þ l�ij�ij

�
� c0V
2T0

ðT � T0Þ2 � s0T : ð107Þ
5.3. Function g ¼ g(�ij; s)

We start with the relationship
gð�ij; sÞ ¼ uð�ij; sÞ � rij�ij � Ts; ð108Þ
to obtain
og
o�ij

� �
s

¼ ��kl
orkl

o�ij

� �
s

� s
orij

os

� �
�

; ð109Þ
and
og
o�ij

� �
s

¼ �ðkS�kkdij þ 2l�ijÞ þ
jTa0T0
c0V

sdij: ð110Þ
On the other hand,
og
os

� �
�

¼ ��ij
orij

os

� �
�

� s
oT
os

� �
�

¼ T0
c0V

ðjTa0�kk � sÞ: ð111Þ
The joint integration of Eqs. (110) and (111) gives
gð�ij; sÞ ¼ � 1

2
kS�

2
kk

�
þ l�ij�ij

�
þ jTa0T0

c0V
s�kk �

T0
2c0V

ðs2 � s20Þ � T0s0: ð112Þ
5.4. List of Gibbs energy functions in terms of four pairs of independent state variables
gðrij; T Þ ¼ � 1

4l
rijrij

�
� mT
1þ mT

r2
kk

�
� a0

3
ðT � T0Þrkk �

c0P
2T0

ðT � T0Þ2 � s0T ð113Þ

gðrij; sÞ ¼ � 1

4l
rijrij

�
� mS
1þ mS

r2
kk

�
þ a0T0

3c0P
s0rkk �

T0
2c0P

ðs2 � s20Þ � T0s0 ð114Þ

gð�ij; T Þ ¼ � 1

2
kT �

2
kk

�
þ l�ij�ij

�
� c0V
2T0

ðT � T0Þ2 � s0T ð115Þ
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gð�ij; sÞ ¼ � 1

2
kS�

2
kk

�
þ l�ij�ij

�
þ jTa0T0

c0V
s�kk �

T0
2c0V

ðs2 � s20Þ � T0s0 ð116Þ
6. Enthalpy in terms of four pairs of independent state variables

The enthalpy was expressed in Section 2.4 in terms of its natural independent variables h ¼ hðrij; sÞ. We

now derive its representation in terms of other three pairs of independent variables.
6.1. Function h ¼ h(rij; T)

We start with the relationship
hðrij; T Þ ¼ gðrij; T Þ þ Ts; ð117Þ
to obtain
oh
orij

� �
T

¼ ��ij þ T
o�ij
oT

� �
r

; ð118Þ
and
oh
orij

� �
T

¼ � 1

2l
rij

�
� mT
1þ mT

rkkdij

�
þ a0

3
T0dij: ð119Þ
On the other hand,
oh
oT

� �
r

¼ T
os
oT

� �
r

¼ c0P
T0

T : ð120Þ
The joint integration of Eqs. (119) and (120) gives
hðrij; T Þ ¼ � 1

4l
rijrij

�
� mT
1þ mT

r2
kk

�
þ a0

3
T0rkk þ

c0P
2T0

ðT 2 � T 2
0 Þ: ð121Þ
6.2. Function h ¼ h(�ij; s)

We start with the relationship
hð�ij; sÞ ¼ uð�ij; sÞ � rij�ij; ð122Þ

to obtain
oh
o�ij

� �
s

¼ ��kl
orkl

o�ij

� �
s

; ð123Þ
and
oh
o�ij

� �
s

¼ �ðkS�kkdij þ 2l�ijÞ: ð124Þ
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On the other hand,
oh
os

� �
�

¼ T � �ij
orij

os

� �
�

¼ T þ jTa0T0
c0V

�kk ¼
T0
c0V

ðs� s0Þ þ T0: ð125Þ
The joint integration of Eqs. (124) and (125) gives
hð�ij; sÞ ¼ � 1

2
kS�

2
kk

�
þ l�ij�ij

�
þ T0
2c0V

ðs� s0Þ2 þ T0ðs� s0Þ: ð126Þ
6.3. Function h ¼ h(�ij; T)

We start with the relationship
hð�ij; T Þ ¼ f ð�ij; T Þ � rij�ij � Ts; ð127Þ
to obtain
oh
o�ij

� �
T

¼ ��kl
orkl

o�ij

� �
T

� T
orij

oT

� �
�

; ð128Þ
and
oh
o�ij

� �
T

¼ �ðkT �kkdij þ 2l�ijÞ þ jTa0Tdij: ð129Þ
On the other hand,
oh
oT

� �
�

¼ ��ij
orij

oT

� �
�

þ T
os
oT

� �
�

¼ jTa0�kk þ
c0V
T0

T : ð130Þ
The joint integration of Eqs. (129) and (130) gives
hð�ij; T Þ ¼ � 1

2
kT �

2
kk

�
þ l�ij�ij

�
þ jTa0T �kk þ

c0V
2T0

ðT 2 � T 2
0 Þ: ð131Þ
6.4. List of enthalpy functions in terms of four pairs of independent variables
hðrij; sÞ ¼ � 1

4l
rijrij

�
� mS
1þ mS

r2
kk

�
� a0T0

3c0P
ðs� s0Þrkk þ

T0
2c0P

ðs� s0Þ2 þ T0ðs� s0Þ ð132Þ

hðrij; T Þ ¼ � 1

4l
rijrij

�
� mT
1þ mT

r2
kk

�
þ a0

3
T0rkk þ

c0P
2T0

ðT 2 � T 2
0 Þ ð133Þ

hð�ij; sÞ ¼ � 1

2
kS�

2
kk

�
þ l�ij�ij

�
þ T0
2c0V

ðs� s0Þ2 þ T0ðs� s0Þ ð134Þ

hð�ij; T Þ ¼ � 1

2
kT �

2
kk

�
þ l�ij�ij

�
þ jTa0T �kk þ

c0V
2T0

ðT 2 � T 2
0 Þ ð135Þ
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7. Uniaxial loading and thermoelastic effect

The derived representations of thermodynamic potentials for arbitrary three-dimensional states of stress

and strain are greatly simplified in the case of uniaxial and spherical states of stress and strain. The cor-
responding results are listed in Appendices A–D. To illustrate the use of some of the derived formulas,

consider uniaxial loading paths shown in Fig. 1. The path OAB is an adiabatic (fast loading) path, the path

OC is an isothermal (slow loading) path, the path AC is a constant stress path, and the path BC is a

constant longitudinal strain path. Along the adiabatic path OAB (see the expression for uðr; sÞ from

Appendix A)
Fig. 1.

consta
u ¼ �h ¼ 1

2ES
r2; ð136Þ
while along the isothermal path OC (see the expressions for f ðr; T Þ and gðr; T Þ from Appendix A)
f � f0 ¼ g0 � g ¼ 1

2ET
r2; f0 ¼ g0 ¼ �T0s0: ð137Þ
The temperature drop along the adiabatic path is
T � T0 ¼ � a0T0
3c0P

r; ð138Þ
in accord with Kelvin’s formula describing Joule’s thermoelastic effect (Fung, 1965, p. 388). The entropy

increase along the isothermal path is
s� s0 ¼
a0
3
r; ð139Þ
with the corresponding absorbed heat given by T0ðs� s0Þ.
The heat absorbed along the constant stress path AC is equal to the enthalpy change
hC � hA ¼ a0T0
3

rA �
a20T0
18c0P

r2
A: ð140Þ
Uniaxial loading along isothermal path OC, and along adiabatic path OAB. The paths AC and BC are the constants stress and

nt longitudinal strain paths, respectively.
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This is in agreement with the result following from
Z TC

TA

cP ðT ÞdT ¼ c0P
2T0

ðT 2
0 � T 2

A Þ: ð141Þ
The heat absorbed along the constant longitudinal strain path BC is
uC � uB ¼ 1

2ET
r2
C

�
þ a0T0

3
rC

�
� 1

2ES
r2
B; ð142Þ
which gives
uC � uB ¼ a0T0
3

rA �
ES

ET

a20T0
18c0P

r2
A: ð143Þ
This can be confirmed by integrating
Z sC

sB

T ds ¼
Z sC

sB

T0

�
þ T0
c0P

s
�

� s0 �
a0
3
r
��

ds; ð144Þ
with the stress variation, along the path BC, given by
r ¼ ES

ET
rA �

a0T0
3c0P

ESðs� s0Þ: ð145Þ
For metals, the second term on the right-hand side of Eq. (143) is much smaller than the first term, being
associated with small departures of cP and cV from their reference values c0P and c0V , inherent in linear

approximations cP ¼ c0P T=T0 and cV ¼ c0V T=T0, which are valid for sufficiently small temperature differences

ðT � T0Þ.
An alternative derivation of (143) proceeds by noting that dr ¼ �ETa0 dT=3 along the path BC

(because the longitudinal component of strain is fixed along that path). The corresponding increment of

entropy is
ds ¼ a0
3
drþ c0P

T0
dT ¼ c0P

T0

ET

ES
dT ; ð146Þ
recalling the relationship (47) between isothermal and adiabatic Young’s moduli. Therefore,
Z TC

TB

T ds ¼ c0P
2T0

ET

ES
T 2
0

�
� T 2

B

�
: ð147Þ
The incorporation of Eq. (138) reproduces Eq. (143).

Yet another derivation is possible by starting from an expression for the heat increment in terms of the

latent and specific heats, i.e.,
T ds ¼ l�ij d�ij þ cV dT : ð148Þ
The components of the latent heat tensor at constant strain are defined by
l�ij ¼ T
os
o�ij

� �
T

¼ jTa0Tdij; ð149Þ
which gives
T ds ¼ jTa0T d�kk þ cV dT ; ð150Þ
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Since, along the path BC,
d�kk ¼
2

3
ð1þ mT Þa0 dT ; ð151Þ
the substitution into Eq. (150), and integration from TB to TC ¼ T0, gives Eq. (143). This derivation is

facilitated by noting that, in view of Eq. (46),
ð1þ mT Þ
a20T0
9c0P

¼ mS � mT
ES

: ð152Þ
The individual contributions of the latent and specific heat to total heat absorbed along the path BC are
Z C

B
cV dT ¼ 1� 2mS

1� 2mT
ðuC � uBÞ; ð153Þ
Z C

B
l�ij d�ij ¼ 2

mS � mT
1� 2mT

ðuC � uBÞ: ð154Þ
The contribution given by (153) is smaller than ðuC � uBÞ, because mS > mT . Since the lateral strain is not

held constant along the path BC, there is a small but positive contribution to absorbed heat from the latent

heat, and this is represented by Eq. (154). Both, Eqs. (143) and (153) display in their structure a simple
combination of adiabatic and isothermal elastic constants, via the ratio terms ES=ET and
c0V
c0P

ES

ET
¼ 1� 2mS

1� 2mT
: ð155Þ
8. Conclusions

The thermodynamic analysis is presented which yields the expressions for all thermodynamic potentials
(internal energy, Helmholtz free energy, Gibbs energy, and enthalpy) in terms of four possible pairs of

independent state variables from the set of stress, strain, temperature, and entropy. The derived results for

some of the considered potentials, and for the particular pairs of independent state variables, are well-

known from linear thermoelasticity, but are presented here in conjunction with other results for the

completeness of general formulation. The presented analysis is, in essence, an extension of the classical

thermodynamics analysis, which is cast within the scalar setting (involving pressure and volume), to the

three-dimensional tensorial setting (involving stress and strain tensors). When the stress is an independent

variable, the thermodynamic potentials involve in their structure the specific heat cP . With the strain as an
independent variable, the specific heat cV appears in the representation of the thermodynamic potentials. If

the temperature is used as an independent variable, the thermodynamic potentials are expressed in terms of

the isothermal elastic constants (kT , mT , jT ). With the entropy as an independent variable, the adiabatic

counterparts (kS, mS , jS) appear in the representation of the thermodynamic potentials. If a thermodynamic

potential contains a mixed strain–entropy term, such as �kks, either the ratio jT=c0V or jS=c0P multiplies that

term. The presented thermodynamic analysis also delivers the relationships between different types of in-

volved elastic and thermodynamic constants. The general results are applied to uniaxial and spherical states

of stress and strain, with a particular attention given to uniaxial loading under isothermal, adiabatic,
constant stress, and constant strain conditions. A simple combination of adiabatic and isothermal elastic

constants appears in the expression for the exchanged heat along the constant strain path.



V.A. Lubarda / International Journal of Solids and Structures 41 (2004) 7377–7398 7395
Acknowledgement

Research support from the NSF Grant No. 0243695 is kindly acknowledged.

Appendix A. Thermodynamic potentials for uniaxial stress

For the uniaxial state of stress
rij ¼ rdi1dj1 ; rijrij ¼ r2; rkk ¼ r:
The corresponding thermodynamic potentials are
uðr; sÞ ¼ 1

2ES
r2 � T0

2c0P
ðs� s0Þ2 þ T0ðs� s0Þ;

uðr; T Þ ¼ 1

2ET
r2 þ a0

3
Trþ c0P

2T0
ðT 2 � T 2

0 Þ;

f ðr; sÞ ¼ 1

2ES
r2 þ a0T0

3c0P
sr� T0

2c0P
ðs2 � s20Þ � T0s0;

f ðr; T Þ ¼ 1

2ET
r2 � c0P

2T0
ðT � T0Þ2 � s0T ;

gðr; sÞ ¼ � 1

2ES
r2 þ a0T0

3c0P
s0r� T0

2c0P
ðs2 � s20Þ � T0s0;

gðr; T Þ ¼ � 1

2ET
r2 � a0

3
ðT � T0Þr� c0P

2T0
ðT � T0Þ2 � s0T ;

hðr; sÞ ¼ � 1

2ES
r2 � a0T0

3c0P
ðs� s0Þrþ T0

2c0P
ðs� s0Þ2 þ T0ðs� s0Þ;

hðr; T Þ ¼ � 1

2ET
r2 þ a0

3
T0rþ c0P

2T0
ðT 2 � T 2

0 Þ:
The constitutive equations are
�ij ¼
r
2l

di1dj1

�
� mT
1þ mT

dij

�
þ a0

3
ðT � T0Þdij;
or
�ij ¼
r
2l

di1dj1

�
� mS
1þ mS

dij

�
þ a0T0

3c0P
ðs� s0Þdij;
and
s� s0 ¼
a0
3
rþ c0P

T0
ðT � T0Þ:
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Appendix B. Thermodynamic potentials for uniaxial strain

For the uniaxial state of strain
�ij ¼ �di1dj1 ; �ij�ij ¼ �2; �kk ¼ �:
The corresponding thermodynamic potentials are
uð�; sÞ ¼ 1

2
ðkS þ 2lÞ�2 � jTa0T0

c0V
ðs� s0Þ�þ

T0
2c0V

ðs� s0Þ2 þ T0ðs� s0Þ;

uð�; T Þ ¼ 1

2
ðkT þ 2lÞ�2 þ jTa0T0�þ

c0V
2T0

ðT 2 � T 2
0 Þ;

f ð�; sÞ ¼ 1

2
ðkS þ 2lÞ�2 þ jTa0T0

c0V
s0��

T0
2c0V

ðs2 � s20Þ � T0s0;

f ð�; T Þ ¼ 1

2
ðkT þ 2lÞ�2 � jTa0ðT � T0Þ��

c0V
2T0

ðT � T0Þ2 � s0T ;

gð�; sÞ ¼ � 1

2
ðkS þ 2lÞ�2 þ jTa0T0

c0V
s�� T0

2c0V
ðs2 � s20Þ � T0s0;

gð�; T Þ ¼ � 1

2
ðkT þ 2lÞ�2 � c0V

2T0
ðT � T0Þ2 � s0T ;

hð�; sÞ ¼ � 1

2
ðkS þ 2lÞ�2 þ T0

2c0V
ðs� s0Þ2 þ T0ðs� s0Þ;

hð�; T Þ ¼ � 1

2
ðkT þ 2lÞ�2 þ jTa0T �þ

c0V
2T0

ðT 2 � T 2
0 Þ:
The constitutive equations are
rij ¼ �ðkTdij þ 2ldi1dj1Þ � jTa0ðT � T0Þdij;
or
rij ¼ �ðkSdij þ 2ldi1dj1Þ �
jSa0T0
c0P

ðs� s0Þdij;
and
s� s0 ¼ jTa0�þ
c0V
T0

ðT � T0Þ:
Appendix C. Thermodynamic potentials for spherical stress

For the spherical state of stress
rij ¼ rdij; rijrij ¼ 3r2; rkk ¼ 3r:
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The corresponding thermodynamic potentials are
uðr; sÞ ¼ 1

2jS
r2 � T0

2c0P
ðs� s0Þ2 þ T0ðs� s0Þ;

uðr; T Þ ¼ 1

2jT
r2 þ a0Trþ c0P

2T0
ðT 2 � T 2

0 Þ;

f ðr; sÞ ¼ 1

2jS
r2 þ a0T0

c0P
sr� T0

2c0P
ðs2 � s20Þ � T0s0;

f ðr; T Þ ¼ 1

2jT
r2 � c0P

2T0
ðT � T0Þ2 � s0T ;

gðr; sÞ ¼ � 1

2jS
r2 þ a0T0

c0P
s0r� T0

2c0P
ðs2 � s20Þ � T0s0;

gðr; T Þ ¼ � 1

2jT
r2 � a0ðT � T0Þr� c0P

2T0
ðT � T0Þ2 � s0T ;

hðr; sÞ ¼ � 1

2jS
r2 � a0T0

c0P
ðs� s0Þrþ T0

2c0P
ðs� s0Þ2 þ T0ðs� s0Þ;

hðr; T Þ ¼ � 1

2jT
r2 þ a0T0rþ c0P

2T0
ðT 2 � T 2

0 Þ:
The constitutive equations are
� ¼ r
3jT

þ a0
3
ðT � T0Þ;
or
� ¼ r
3jS

þ a0T0
3c0P

ðs� s0Þ;
and
s� s0 ¼ a0rþ c0P
T0

ðT � T0Þ:
Appendix D. Thermodynamic potentials for spherical strain

For the spherical strain
�ij ¼ �dij; �ij�ij ¼ 3�2; �kk ¼ 3�:
The corresponding thermodynamic potentials are
uð�; sÞ ¼ 9

2
jS�

2 � 3jTa0T0
c0V

ðs� s0Þ�þ
T0
2c0V

ðs� s0Þ2 þ T0ðs� s0Þ;

uð�; T Þ ¼ 9

2
jT �

2 þ 3jTa0T0�þ
c0V
2T0

ðT 2 � T 2
0 Þ;
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f ð�; sÞ ¼ 9

2
jS�

2 þ 3jTa0T0
c0V

s0��
T0
2c0V

ðs2 � s20Þ � T0s0;
f ð�; T Þ ¼ 9

2
jT �

2 � 3jTa0ðT � T0Þ��
c0V
2T0

ðT � T0Þ2 � s0T ;
gð�; sÞ ¼ � 9

2
jS�

2 þ 3jTa0T0
c0V

s�� T0
2c0V

ðs2 � s20Þ � T0s0;
gð�; T Þ ¼ � 9

2
jT �

2 � c0V
2T0

ðT � T0Þ2 � s0T ;
hð�; sÞ ¼ � 9

2
jS�

2 þ T0
2c0V

ðs� s0Þ2 þ T0ðs� s0Þ;
hð�; T Þ ¼ � 9

2
jT �

2 þ 3jTa0T �þ
c0V
2T0

ðT 2 � T 2
0 Þ:
The constitutive equations are
r ¼ 3jT �� jTa0ðT � T0Þ;
or
r ¼ 3jS��
jSa0T0
c0P

ðs� s0Þ;
and
s� s0 ¼ 3jTa0�þ
c0V
T0

ðT � T0Þ:
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